Gemasolar as SKA? (Alan Roy, Olaf Wucknitz, Ivan Camara, ...)

Gemasolar Size Comparison

Gemasolar Basics

Mirror Surface Accuracy

Mirror Surface Accuracy

Mirror Surface Accuracy

Mirror Deviation from Parabolic

Model Mirror Locations

Gemasolar Model Mirror Locations

Model Mirror Locations

Gemasolar Model Mirror Locations

Incoherent Summation: Model Geometry

Physical Optics Model

1) Calculate Propagation Delays:

For 2650 mirrors and a chosen pointing centre ($\mathrm{az}=30^{\circ}$, el $=50^{\circ}$):

$$
\tau_{i}=\tau_{\text {wavefront to mirror } i}+\tau_{\text {mirror } i \text { to focus }}
$$

2) Calculate field at PAF $j^{\text {th }}$ ellement: Sum signal from each mirror path:

$$
\widetilde{E}_{j}=\sum_{i=0}^{2650} e^{-i \omega \tau_{i}}
$$

3) Square the voltage to get power

$$
P_{j}=\tilde{E}_{\mathrm{j}}^{2}
$$

4) Plot power over focal plane: P_{j} vs focal plane (x, y)

Physical Optics: Side Profile

Physical Optics: Side Profile at Focus

Physical Optics: Side Profile at Focus

Physical Optics: Side Profile at Focus

Slice across Focal Plane

Physical Optics: Side Profile at Focus

Physical Optics: Side Profile at Focus

Focal Plane Speckle

8 m

Calculated from array geometry for $\lambda=21 \mathrm{~cm}$

Point source at
Az 30° el 50°

Speckle size
$=10 \mathrm{~cm}$
ie $\lambda / 2$ as expected

Coherence Length in Frequency

Movie step size for smooth speckle motion: $\quad 0.1 \mathrm{MHz}$

Delay across 1200 m array: Reciprocal gives channel width:
$4 \mu \mathrm{~s}$
$1 / 4 \mu s=0.25 \mathrm{MHz}$
Monochromatic if channel $<0.25 \mathrm{MHz}$
Then can correct phases, not delays.

Focal Plane Speckle: Direction Dependence

8 m

Calculated from array geometry for $\lambda=21 \mathrm{~cm}$

Point source at

8 m

Focal Plane Speckle: phase screen

Calculated from array geometry for $\lambda=21 \mathrm{~cm}$

Point source at
Az 30° el 50°

Beam Reconstruction

1. Calibration Map: For the desired pointing direction:

Take the model speckle map in that direction, will be used as calibration map
2. Beamform: Apply calibration and sum over PAF elements:

For each focal plane element:

1. Unwind phase:

Rotate phase backward using angle from model phase screen
2. Apply weight to amplitude,

Use gain from model speckle map
3. Add this weighted element into sum
3. Map the resulting beam:

Beam-form the speckle maps from all directions using one cal map
4. Multi-Beaming:

Repeat 1. and 2. for all directions within FoV of 10 m element:

Beam Reconstruction

Slice through beamformed beam

Beam Steering:

Point source in zenith,

Mirrors lifted onto parabola.

PAF Weight Update Rate:

Speckle phase at centre element vs time when tracking in az

Focal Plane Array?

 4608 Vivaldi antennas, 12.5 cm spacing 8.42 m x 8.42 m

Torchinsky et al. 2016, A\&A

Multi-Beaming:

FoV:
10 m mirror @ $\lambda=21 \mathrm{~cm}->1.2^{\circ}$
Synthesized beam: 1200 m aperture -> 1.2'
Synthesized beams across FoV: 120
Synthesized beams tiling the FoV: $\sim 120 \times 120$
~ 14000
PAF cost scaled from APERTIF:

$$
\text { Area }=12 \mathrm{~m} \times 12 \mathrm{~m}=110 \mathrm{~m}^{2}
$$

APERTIF: 250 kEUR for $1 \mathrm{~m}^{2}$
-> 25 MEUR (upper limit since DSP costs dropping)

Beamform Towards Mirrors, Digital Delay?

Single Element? Concentrating Optics like RATAN 600

RATAN 600 secondary

wWW.sao.ru

RAKE Receiver: Horn, Receiver, Processing

Time-Domain Reconstruction: Acoustic Chaotic Pinball

Signal received on one array element >> $1 \mu \mathrm{~s}$
Pulse arriving back at transmitter after time-reversed play-back from array

The RAKE Receiver in Mobile Phones (2G upward)

Figure 3. AM-branch RAKE receiver implementation

Each correlator detects a time-shifted version of the signal by shifting the code in each correlator

Source: Tommi Heikkilä (TeliaSonera AB) 2004 "RAKE Receiver" from "Postgraduate Course in Radio Communications, Autum 2004", Aalto University

The RAKE Receiver in Mobile Phones (2G upward)

Figure 4. Block diagram of a RAKE receiver
Source: Tommi Heikkilä (TeliaSonera AB) 2004 "RAKE Receiver" from "Postgraduate Course in Radio Communications, Autum 2004", Aalto University

The RAKE Receiver Patent

Price \& Green 1956 (MIT Lincoln Lab),

Anti-Multipath Receiving System

US Patent 2982853 A

```
<snip>
```

the signal arriving over each path is detected individually. All detected signals are then added after weighting by a factor maximizing the signal to noise ratio of the sum.
<snip>
multipath produces at different frequencies regions of signal reinforcement and cancellation. The wide band technique described here has the effect of making greater use of the frequencies having greater response while attenuating the receiver response at others.
<snip>
if the signals detected from each path are individually delayed by the proper amount, all signals can be made to arrive at the addition point at the same time. Then the propagation from transmitter to receiver output consists effectively of a single strong path rather than a succession of weaker paths.
<snip>

Sensitivity Comparison with SKA

Area	Frequency	Tsys	Aeff / Tsys	
SKA1-survey	$14674 \mathrm{~m}^{2}$	350 to 4000 MHz	30 K	
SKA1-mid	$42737 \mathrm{~m}^{2}$	580 to 1670 MHz $(8000$ to 13800 MHz$)$	25 K	$1390 \mathrm{~m}^{2} / \mathrm{K}$
SKA2	$350000 \mathrm{~m}^{2}$	200 to 2000 MHz	25 K (?)	$10000 \mathrm{~m}^{2} / \mathrm{K}$
Gemasolar	$305000 \mathrm{~m}^{2}$	800 to $14000 \mathrm{MHz}(?)$	$100 \mathrm{~K}(?)$	$3050 \mathrm{~m}^{2} / \mathrm{K}$

SKA Data: "SKA1 System Baseline Design" P Dewdney 2013

Existing Solar Power Towers: PS10, PS20

Location:
 Capacity:
 Area:
 Heliostats:
 Tower height:
 Construction:

Seville, Spain
10 MW (PS10) / 20 MW (PS20)
305 m (PS10) / 440 m (PS20) diameter single dish 610 (PS10) / 1255 (PS20) each $120 \mathrm{~m}^{2}$
165 m
2005-2007 (PS10) / 2006-2009 (PS20)

Existing Solar Power Towers: Crescent Dunes

Future Solar Power Towers: Khi Solar One

Future Solar Power Towers: Atacama-1(?)

Location:
Capacity:
Area:
Heliostats:
Tower height:
Construction:
Project:

Comune de María Elena, Antofagasta Region, Chile 110 MW
$1484000 \mathrm{~m}^{2}=1375 \mathrm{~m}$ diameter single dish 10600 each $140 \mathrm{~m}^{2}$
250 m
Q3 2014 - 2017 (2015 Oct: on hold due to fall in copper demand)
Abengoa (Spain)

Existing Solar Power Towers: Ivanpah

Location:
Capacity:
Area:
Heliostats:
Tower height:
Construction:

Nevada, USA (75 km SW from Las Vegas) 392 MW
$2602500 \mathrm{~m}^{2}=1820 \mathrm{~m}$ diameter single dish 173500 each $15 \mathrm{~m}^{2}$
140 m
Oct 2010 - Feb 2014 complete online, cost 2.2 billion USD

Solar Power Towers

Power Tower Projects

Concentrating solar power (CSP) projects that use power tower systems are listed below-alphabetically by project name. You can browse a project profile by clicking on the project name. You can also find related information on power tower principles and research and development.

- ACME Solar Tower
- Ashalim Plot B (Megalim)
- Atacama-1
- Crescent Dunes Solar Energy Project (Tonopah)
- Dahan Power Plant
- Gemasolar Thermosolar Plant (Gemasolar)
- Greenway CSP Mersin Tower Plant
- Ivanpah Solar Electric Generating System (ISEGS)
- Jemalong Solar Thermal Station
- Jülich Solar Tower
- Khi Solar One
- Lake Cargelligo
- NOOR III
- Palen Solar Electric Generating System
- Planta Solar 10 (PS10)
- Planta Solar 20 (PS20)
- Qinghai Delingha Solar Thermal Generation Project
- Redstone Solar Thermal Power Plant
- Rice Solar Energy Project (RSEP)
- Sierra SunTower (Sierra)
- Supcon Solar Project

2015: 11 stations operating area $=4.3 \mathbf{~ k m}^{2}$

2018: 21 stations operating area $=\mathbf{1 1 . 7} \mathbf{~ k m}^{2}$

2032: South Africa + Chile: 20 \% energy from renewables.
http://www.nrel.gov/csp/solarpaces/power_tower.cfm

Research Facility: National Solar Thermal Test Facility

Research Facility: National Solar Thermal Test Facility

STACEE

Air Cherenkov detector
r-rays 130 - 2000 GeV
U. Alberta, UCLA, UC Santa Cruz, Case Western, Columbia U., McGill U.

2001-2007 observations

Detected Crab, Mrk 421, Light curves, spectra

Replaced by VERITAS, MAGIC

Secondary mirror

PMT array

Research Facility: Jülich Solar Tower

Capacity:
Area:
Heliostats:
Tower height:
Construction: Owners:
1.5 MW
$17650 \mathrm{~m}^{2}=150 \mathrm{~m}$ diameter single dish 2153 each $8.2 \mathrm{~m}^{2}$
60 m
2007-2008
DLR, Uni Aachen

Research Facility: Jülich Solar Tower

1.5 MW heat exchanger
for power production

Mispointed mirrors show focal area of a mirror

Experiment platform
500 kW

Research Facility: Jülich Solar Tower

View from experiment platform shows high mirror covering factor and subtended angle - good for illumination with conventional feed horn.

